

OPEN POSSIBILITIES

High-Speed Horizontal Machining Center

High accuracy, High productivity, **Environmentally friendly**

Collision Avoidance

All types of machining are supported, from mass production to high value-added processing, based on the concept of smooth, stress-free operation. Environmentally friendly smart machine that contribute to realizing a carbon-free society

LOKUMA

MB-4000H

MB-4000H

Photographs and images used in this brochure may include optional equipment.

Higher productivity achieved with higher machining capacity and reduced non-cutting time

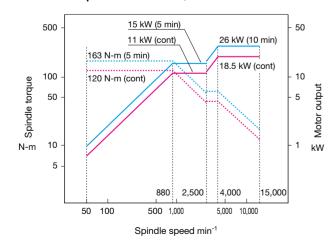
High machining capacities achieved with fast, powerful spindles

Machining capacity

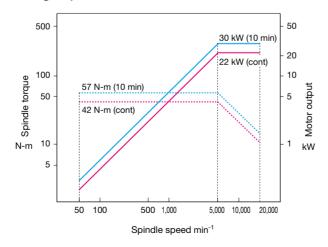
638 cm³/min

ø20 roughing end mill Material: S45C Standard spindle: 15,000 min-1

Тооі	Spindle speed min ⁻¹	Cutting m/min	Feed rate mm/min	Cut width mm	Cut depth mm	Chips cm³/min
ø80 face mill 8 blades (cermet)	895	225	2,650	56	2.7	400
ø20 roughing end mill 7 flutes (carbide)	4,000	251	5,320	6	20	638
ø35 insert drill (carbide)	880	97	132	_	-	_
Тар М30Р3.5	320	30	1,120	-	-	-


Note: The data shown here represent "actual data " which may not be obtained under different specifications tooling, cutting, and other conditions

Optimal performance, with spindle tailored to machining task


The types available include: standard spindle for various applications; optimal high-speed spindle for highly efficient aluminum and die/mold machining; - just pick the right spindle for the job.

Standard specifications 15,000 min⁻¹

■ High-speed 20,000 min⁻¹

Mechanical structure and construction achieving highly efficient machining

Shorter lead times with reduced non-cutting time

Machine performance

Quicker movements reduce non-cutting time-ideal for high-mix production applications.

Rapid traverse	X-Y-Z: 60 m/min
Acceleration	Max. 1 G
Tool change	*1T-T/C-C: 1.0/2.6 sec (tool mass less th 1.3/2.9 sec (tool mass more to *2 CTC min: 2.9 sec
Pallet change	*16.9 sec *27.0 sec

*1. MAS standard measurements (formerly JIS B 6013)

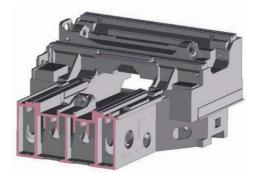
*2. ISO 10791-9 (2001) (JIS B 6336-9) measurements

Cycle time reduction

Operation time reduction

The non-cutting time is shortened by simultaneously performing multiple operations, such as spindle rotation and axis movements, and allowing the rotational axis to take the shortest path.

Machining time shortening

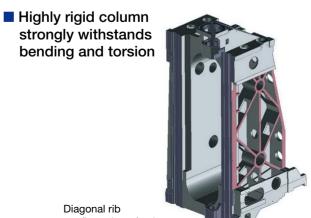

The cycle time is reduced for parts machining with frequent switches between cutting feed and rapid traverse by using feeder-mode high-speed switching and optimal acceleration/deceleration.

- Easy parameter setting
- Collects parameters related to cycle time reduction in a single screen for enabling changes and reuse in a single operation

Machine structure

- Integrated ball-screw bracket
- Y-axis motor base cooling
- Ball-screw cooling (option)
- High accuracy indexing table NC 0.001° indexing

Bed supports rapid travel of large masses



Ribs placed directly under guideways

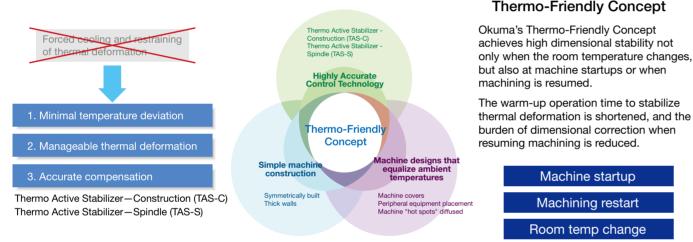
han 4 kg) than 4 kg)

	1mm(PROGRAM)	ACT POSIT WK SETUP	
POSITION HORE CO.: Co 1 POSITION DISTANCE X 6.000 0.001 0.001 V 6.000 0.001 0.001 V 6.000 0.000 0.000 V 7.000 0.000 0.000 V 7.000 0.000 0.000 V 0.000 0.000 0.000 V 0.000 0.000 0.000 S 0.000 0.000 0.000 S 0.000 0.000 0.000	WIRE/GEAR LOAD BURKE SE FILL AS	UFDATE OFTAL SAVE LEST M COTTANS TEM CONFRAL AUDICI AUDICI OTHER	a
V 0 BCORSMA MAEM/SUB PROGRAM(DEC) 0 > N1 (CDH) 0 N2 T2 N3 (H6)		UPDATE DETAIL	SAVE LIS
s4 11 s5 c02999. s6 R158115 s7 c180.n0. s8 CALL 0088 PX-0.PV-0.P1	NON CUTTING ITEM		GENERAL ALUMI

• Pallet seating surface uses a taper cone system for high accuracy.

configuration of columns

High accuracy and high quality machining with Intelligent **Technology**


Thermo-Friendly Concept Manageable Deformation-Accurately controlled

High accuracy is enabled in normal factory environments. The unique approach of "accepting temperature changes."

The machining accuracy of the workpiece changes significantly due to temperature change in the machine's periphery, heat generated from the machine itself, and heat generated from machining.

This unique Thermo-Friendly Concept accommodates such temperature changes, achieving stable accuracy together with reduced carbon dioxide emissions. There is no requirement for excessive ambient temperature control or special machine cooling systems to maintain processing accuracy.

Thermo-friendly structure gives outstanding thermal stability

Machining dimensional change over time minimized with outstanding dimensional stability

TAS-C

(Thermo Active Stabilizer—Construction)

TAS-C estimates and accurately controls the volumetric thermal deformation of the machine's construction due to ambient temperature changes; based on data from properly placed sensors, feed axis positions, and actual machine thermal deformation characteristics.

TAS-S

(Thermo Active Stabilizer—Spindle)

The TAS-S spindle thermal deformation control takes into account various conditional changes such as the spindle's temperature data, modification of the spindle rotation and speed, as well as spindle stoppage. The spindle's thermal deformation will be accurately controlled, even when the rotating speed changes frequently.

Eliminate waste with the

Thermo-Friendly Concept

Machine startup

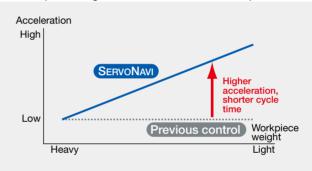
Machining restart

Room temp change

High dimensional stability

Achieves long term accuracy and surface quality

SERVONAVI AP (Automatic Parameter setting)


Work Weight Auto Setting

Cycle time shortened with faster acceleration

On table travel type machining centers, the table feed acceleration with the previous system was the same regardless of weight, such as workpieces and fixtures loaded on the table.

Work Weight Auto Setting estimates the weight of the workpiece and fixture on the table and automatically sets the liner axis servo parameters, including acceleration, to the optimum values. Cycle times are shortened with no changes to machining accuracy.

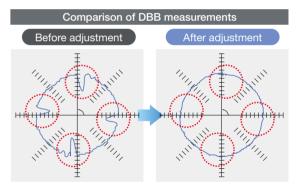
The workpiece weight and acceleration relationship

Rotary Axis Inertia Auto Setting

Maintains high accuracy and stable movements

Depending on the workpiece and its jig, the inertial mass may vary, and with each variation the positional error of the table rotation axis may increase.

Rotary Axis Inertia Auto Setting is able to estimate inertia from workpiece/fixture acceleration and deceleration, and automatically set the optimum the rotary axis servo parameters to maintain highly accurate and stable machine movements.

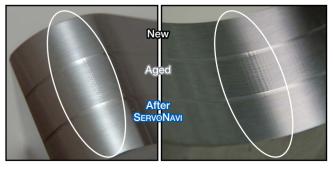

SERVONAVI SF (Surface Fine-tuning)

Reversal Spike Auto Adjustment

Maintains machining accuracy and surface guality

Slide resistance changes with length of time machine tools are utilized, and discrepancies occur with the servo parameters that were the best when the machine was first installed. This may produce crease marks at motion reversals and affect machining accuracy (part surface quality).

SERVONAVI's Reversal Spike Auto Adjustment maintains machining accuracy by switching servo parameters to the optimum values matched to changes in slide resistance.

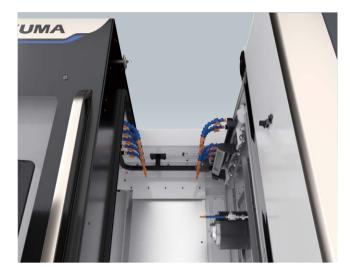


Vibration Auto Adjustment

Contributes to longer machine life

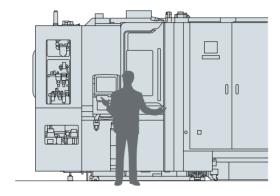
When aging changes machine performance, noise, vibration, crease marks, or fish scales may appear.

Vibration Auto Adjustment can quickly eliminate noise and vibration even from machines with years of operation.


Excellent operability for improved production efficiency

Contribution to the realization of a carbon-free society

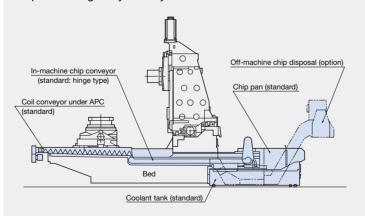
Easy to operate (making life easier for the operator)


Ceiling door

- Good lighting and no coolant dripping
- Easy workpiece mounting/dismounting with a crane

Independent left-side operation panel

 Easier to operate the switches and watch machining chamber movements at the same time. (can swivel)


Column traverse system • Outstanding accessibility to pallet (workpiece), spindle

Chip discharge

- Chips discharged directly with center trough just under spindle
- No accumulation of chips in the machining chamber, neat and simple covering
- · Washing in-machine and under pallet

Chips discharged by conveyor

Highly productive, accurate and eco-friendly Green-Smart Machine

Okuma has worked to reduce energy consumption in order to achieve carbon neutrality at the three factories in Japan which are our main production bases.

We have realized high productivity through automation and process-intensive machining, in addition to high-accuracy machining, and we then introduced the use of green energy to transform the three domestic factories into carbon-neutral factories. "Green-Smart Machines" is our definition of Okuma's intelligent machine tools, which autonomously achieve stable dimensional accuracy and reduced energy consumption, to support environmentally friendly production. Our policy is to deploy "Green-Smart Machines" fully, to help achieve a carbon-free society.

Starting with products manufactured at those carbon-neutral factories and supplying them all over the world, we will work together with our customers to help solve the social issues faced by the manufacturing industry.

Green-Smart Machines are environmentally friendly

products that autonomously achieve stable dimensional accuracies and reduced energy consumption.

Thermo-Friendly Concept

coolers or excessive air conditioning.

The Okuma Intelligent Technology that enables machines to autonomously maintain high accuracy stability

The unique concept of accepting temperature changes

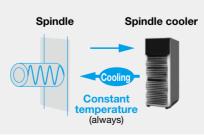
achieves consistent high accuracy without special

Reduction of warm-ups and dimensional

Reduce the time needed for daily warm-ups and

dimensional compensation to adjust to ambient

The machine monitors the cooling level when not machining, and proactively turns off the cooler while maintaining high accuracy conditions.


Reduction of power used for air conditioning Maintain high stability of dimensional accuracy even if the air conditioning temperature range is expanded.

Reduction of machine body coolers Achieve outstanding dimensional accuracy without any special machine body cooling being required to maintain accuracy

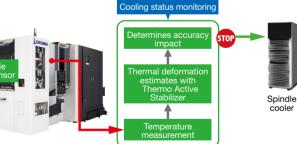
The Okuma way to cool

compensation

temperature changes

By always setting a constant coolant supply temperature, the cooler power consumption is reduced.

In-machine


chip conveyor

A system for an energy-saving society

ECO Idling Stop

Auxiliary equipment consume a substantial portion of the power used in a factory. This function enables each of them to be turned off when not needed to reduce power consumption. In addition to when automatic operation is suspended, it is now possible to stop idling during manual operation. Power consumption and carbon dioxide emissions are reduced without conscious effort by the operator.

ECO Power Monitor

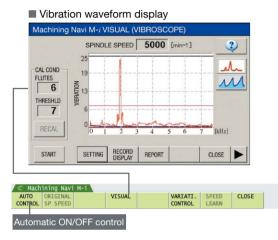
Power is shown individually for spindle, feed axes, and auxiliaries on the OSP operation screen. In addition to regenerative power, the

energy-saving benefits from auxiliary equipment stopped with ECO Idling Stop can be confirmed on the spot.

ECO Operation

By using only the required peripherals (chip conveyor, mist collector),

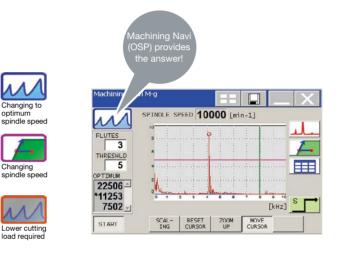
energy-saving operations are possible.

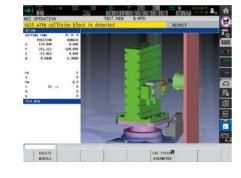

Advanced technology of OSP that is effective at the machining site

Machining Navi M-i, M-gI+ (option) Cutting condition search for milling

Automatically changes to optimum spindle speed (M-*i*)

Built-in sensors measure chatter vibration and the machine automatically changes to the best spindle speed.

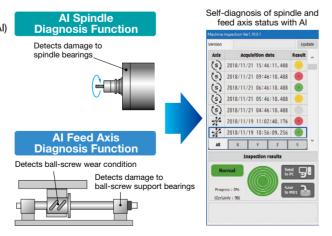

Collision Avoidance System (option) Collision prevention



CAS prevents collisions in automatic or manual mode, providing risk-free protection for the machine and great confidence for the operator.

Adjust cutting conditions while monitoring the data (M-gII+)

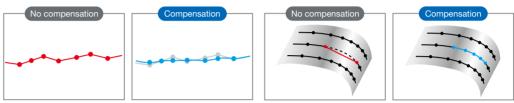
Navigates effective measures by detecting and analyzing machining chatter with a microphone attached to the machine.


Al Machine Diagnosis Function (option) Machine tool diagnostics technology with artificial intelligence (AI)

With predictive maintenance, prevent machine stoppages just in time

Okuma's Al-equipped control diagnoses the presence or absence of abnormalities in the machine spindle and feed axes and identifies any irregularities found.

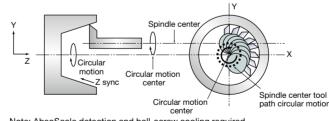
Downtime from machine stoppage is minimized, so the benefits are highly accurate, productive, and stable operations over the long term. The operators themselves can easily diagnose the machine by following simple screen guidelines on the Okuma control. Notes:


Al diagnostic models are already installed, and diagnoses can be performed by the machine itself. Al diagnostic models can be updated through Okuma's Connect Plan. With AbsoScale detection specs, ball-screw wear detection is possible.

Hyper-SurfaceI (option)

Easy and improved die/mold surface quality

By suppressing streaks and edge irregularities caused by CAM machining data, hand finish polishing time can also be reduced. In addition to the Sculptured-Surface Adaptive Acceleration Control with the previous Super-NURBS, the new Hyper-Surface function automatically compensates for edge positioning errors of the machining data output from CAM or the adjacent cutting path while maintaining shape accuracy.


Smooths minor fluctuations and variations in command points

Turn-Cut (option) Turning operations on machining centers

Shorter lead times with process-intensive machining

Simultaneously controlling X-Y circular motion with the tool edge position rotated by the spindle tool enables lathe-like turning. Tapers also possible

- Hole making with different diameters with one tool
- IDs and ODs can be machined when they exceed the maximum tool diameter that ATC can handle

Note: AbsoScale detection and ball-screw cooling required

Flat-Tool Grooving (option) Airtight seal grooving

Grooving with high sealability

The spindle phase is precisely synchronized with cutting edge motion, to perform highly accurate grooving.

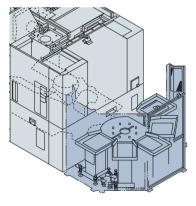
- Getting high sealability without hand finishing.
- Complex seal groove curves also cut with flat tools.

Adjust steps errors between adjacent cutter paths

Comparison of machined surface quality

Flexible production for high-mix workpiece applications, with automated machining over long periods

Efficient high-mix production of diverse parts

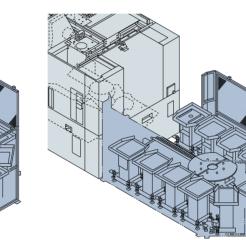

An impressive lineup of automation systems

Compatible with production plans matched to high-mix workpiece demand. The best system for the type of production can be selected.

Flexible APC systems

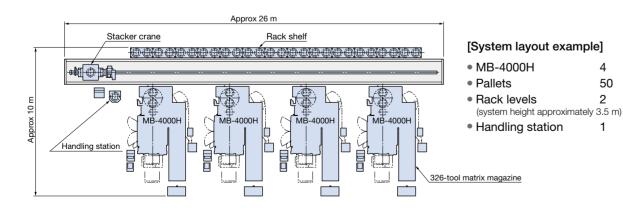
- Multi-pallet APC connects to standard 2-pallet rotary-shuttle APC
- APC change time is the same as in the standard APC
- Can be adapted to match plant layout and type of production

6-pallet APC



12-pallet APC

50


2

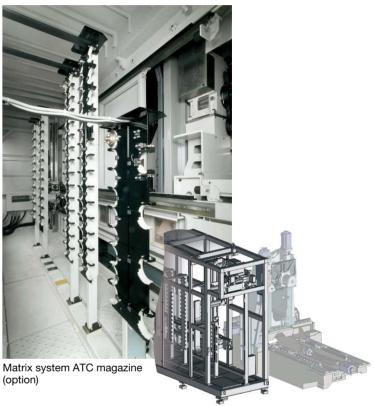
1

Ready for FMS applications

• An FMS with a smart, expandable stacker crane system

Space-saving with large tool capacity Chain system ATC magazine (64-tool: option) Chain system ATC magazine

Expandability of tool magazine


(front-facing)

Front-facing chain type ATC magazine

· Easy tool exchange: 48-tool, 64-tool tool magazines

Magazine door opens to the floor

Respond flexibly with magazine matched to needed tool storage capacity.

Matrix system ATC magazine

Standard	Chain system	48 tools
Optional Specifications	Chain system	64 tools
	Matrix system	110 tools, 146 tools, 182 tools, 218 tools, 326 tools

Machine Specifications

	Item	Unit	MB-4000H
ravels	X-axis (column left/right)	mm (in)	560 (22.05)
	Y-axis (spindle up/down)	mm (in)	560 (22.05)
	Z-axis (table front/back)	mm (in)	625 (24.61)
	Spindle center to pallet top	mm (in)	50 to 610 (1.97 to 24.02)
	Spindle nose to pallet center	mm (in)	85 to 710 (3.35 to 27.95)
Pallet	Pallet size	mm (in)	400 × 400 (15.75 × 15.75)
	Max load	kg (lb)	400 (880)
	Indexing angle	deg	0.001
	Max workpiece dimensions	mm (in)	ø600 × 900 (ø23.62 × 35.43)
Spindle	Spindle speed	min ⁻¹ (rpm)	50 to 15,000 [50 to 20.000]
	Tapered bore		7/24 taper No. 40 [HSK-A63]
	Bearing dia	mm (in)	ø70 (ø2.76)
Feed rate	Rapid traverse	m/min (ipm)	X-Y-Z: 60 (2,362)
	Cutting feed rate	mm/min (ipm)	1 to 60,000 (0.04 to 2,362)
Motors	Spindle (10 min/cont)	kW (hp)	26/18.5 (35/25) [30/22 (47/33)]
	Feed axes	kW (hp)	X: 4.6 (6.13), Y-Z: 3.5 (4.67)
	Table indexing	kW (hp)	3.0 (4.0)
Auto tool	Tool shank		MAS403 BT40 [HSK-A63]
changer	Pull stud		MAS2 [-]
ATC)	Magazine capacity	tools	48 [64, 110 to 326]
	Max tool dia (w/ adjacent)	mm (in)	ø70 (ø2.76)
	Max tool dia (w/o adjacent)	mm (in)	ø150*1 (ø5.91)
	Max tool length	mm (in)	300 (11.81) [400 (15.75)]*2
	Max tool mass	kg (lb)	10 (22)
	Tool selection		Memory random*3
Machine	Height	mm (in)	2,650 (104.33)
Size	Floor space; width × depth	mm (in)	2,420 × 4,700 (95.28 × 185.04)
	Mass	kg (lb)	9,500 (20,900)
Controller			OSP-P500M

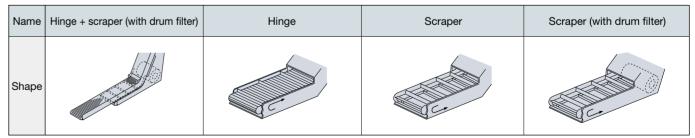
*2. Shutter open/close times become longer with the optional specification.

*3. Fixed address for 110 or more tools

Standard Specifications

Spindle/spindlehead	Oil temperature controller	Work lamp	LED, 1 location
cooling system		Status indicator	3-lamp signal tower
Hydraulic unit		Foundation washers	
Centralized lubrication	Tank 6 L, oil level alarm and pressure	Side-slip prevention tool	Chemical anchors included
automatic oil supplier	alarm equipped	Auto tool changer	Tool capacity: 48
Coolant supply system	Tank 750 L (510 L ^{*1}), pump motor 1,500 W	Auto 0.001° indexing table	
	(double use for nozzle and in-machine)	Auto pallet changer (APC)	2-pallet rotary-shuttle*2
Coolant nozzle	Insert nozzle type	In-machine chip discharge*3	Hinge type chip conveyor
Table area wash	In-machine and under-pallet wash	Chip pan for above	
ATC air blower (blast)		In-machine chip discharge	Coil type chip conveyor
Chip air blower (blast)	Nozzle type	(below APC)	
Full enclosure shielding		TAS-S	Thermo Active Stabilizer-Spindle
Hand tools, tool box		TAS-C	Thermo Active Stabilizer-Construction
Tool release lever		Door interlock	
Tapered bore cleaning bar		*1. Effective *2. Pallets with MA	S tapped holes *3. Directly below the spindle

Optional Specifications


Spindle speeds	50 to 20,000 min ⁻¹ (30/22 kW), HSK-A63	Off-machine chip discharge	Please see the chip conveyors below
Dual contact spindle*1	HSK-A63, BIG-PLUS®	(lift-up chip conveyor)	
ATC magazine capacity	64 (chain)	Chip buckets (heights)	L type: 700 mm, H type: 1,000 mm
(tools)	110, 146, 182, 218, 326 (matrix)	Hydraulic oil cooler	
Max ATC tool length	Max tool length: 400 mm	Coolant heater/cooler	
AbsoScale detection	X-Y-Z axes	Auto tool length	Touch sensor (w/tool breakage detection)
APC pallets	6, 10, 12, FMS	compensation	
Pallet surfaces	T-slot	Auto workpiece gauging	Touch probe (w/zero offset)
Spare pallets		Pull stud shape	MAS1, JIS, CAT, DIN
Edge locator		Standard T-column	Height: 640 mm, width: 400 mm,
Coolant pump		fixture	T-slot pitch: 80 mm
Thru-tool coolant	1.5 MPa	Standard square-column	Height: 640 mm, width: 270 mm,
Thru-spindle coolant*2	MPa: 1.5, 7.0, large flow 1.5, large flow 7.0	fixture	T-slot pitch: 80 mm
Suction of excess coolant		Angle plate	
in spindle		Ball-screw cooler	X-Y-Z axes
Semi-dry machining	Thru-spindle, nozzle, thru/nozzle switch	Additional work lamp	
Shower coolant	10 nozzles, 550 W pump	Machining Navi	M- <i>i</i> , M- <i>g</i> I+
Table area wash discharge		Turning cut	AbsoScale detection (X-Y-Z axes and ball-screw
Work wash gun	250 W pump		cooling are required)
Oil mist lubricator		Hydraulic fixture systems	Linked, pallet-thru types
Mist collector		Recommended for die	AbsoScale detection (X-Y-Z axes)
Chip air blower	Adapter	machining	Hyper-Surface I
In-machine chip discharge	Scraper type chip conveyor		DNC-DT, 0.1 µm control

Chip conveyors (Please contact an Okuma sales representative for dita

Workpiece mate	rial	
Chip shape		
In-machine	Hinge type (standard) *1	
	Hinge + scraper (with drum filter)	
Off-machine	Hinge type	
(option)	Scraper type	
	Scraper type (with drum filter)	

*1. Scraper type (option) can be selected. *2. When there are few fine chips *3. When chips are shorter than 100 mm

Off-machine lift-up chip conveyors

*1 Be sure to select this specification when BIG-PLUS® holder is used. *2 Okuma pull studs required.

tails.)	⊖: Recomr	mended $ riangle$: Condition	onally recommended
Steel	Cast iron	Aluminum / Non-ferrous metal	Mixed (general use)
	A Contraction of the second se		
0	0	0	0
0	0	0	0
0	_	_	∆*2
_	O (Dry)	_	_
_	\bigcirc (Wet) with magnet	∆ *3	

A next-generation CNC that makes manufacturing DX (digital transformation) a reality

Improved productivity and stable production

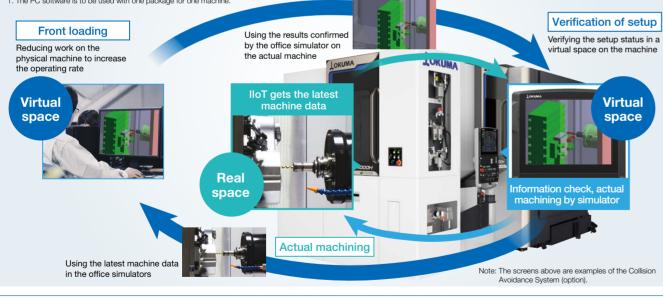
As Your Single Source for M-E-I-K (Mechanics - Electronics - IT - Knowledge) merging technology, Okuma offers this CNC to build an advanced "digital twin" that faithfully reproduces machine control and machining operations and create new value. In addition, Okuma offers productivity improvement and stable production with ease of use that allows customers to use their machining know-how, an energy-saving solutions that achieve both high accuracy/productivity and eco-friendly products, with robust security protection against increasing threats of cyber attacks.

Faithful reproduction of machines and processing — Digital support for shop floor work **Digital Twin (option)**

"Okuma's two digital twins" made possible by an office PC and a next-generation CNC reduce machine downtime and improve machine utilization

The same simulation can be run on the CNC of a real machine as well as on an office PC. When a problem occurs on the shop floor, it can be solved quickly on site without going back to the office.

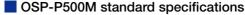
The CNC control, data, and 3D models, the same as those on the real machine, are used to faithfully simulate a virtual machine and improve simulation accuracy.


Pre-verification can be conducted in a short time through super high-speed simulation.

Digital Twin On PC

Simulate shop machines in the office

Front loading is performed with the actual status matched with the data on the office PC to further improve productivity. Highly accurate pre-verification minimizes trial and error in first part


machining, and reduces machine downtime to the minimum. *1. The PC software is to be used with one package for one machine.

Connect Plan Get Connected, Get Started, and Get Innovative with Okuma "Monozukuri"

Connect, Visualize, Improve

Okuma's Connect Plan is a system that provides analytics for improved utilization by connecting machine tools and visual control of factory operation results and machining records. Simply connect the OSP and a PC and install Connect Plan on the PC to see the machine operation status from the shop floor, from an office, from anywhere. The Connect Plan is an ideal solution for customers trying to raise their machine utilization. Machine tool and PC

	· · ·						
Basic Specs	Control	X, Y, Z, simultaneous 3 axis, spindle control (1 axis)					
	Position feedback	OSP full range absolute position feedback (zero point return not required)					
	Coordinate functions	Machine coordinate system (1 set), work coordinate system (20 sets)					
	Min / Max command	±99999.999 mm, ±9999.9999° 8-digit decimal, command units: 0.001 mm, 0.01 mm, 1 mm, 0.0001°, 0.001°, 1°					
	Feed	Cutting feed override: 0 to 200%					
	Spindle control	Direct spindle speed commands, override 30 to 300%, multi-point indexing					
	Tool compensation	No. of registered tools: Max 999 sets, tool length/radius compensation: 3 sets per tool					
	Display	15-inch color LCD + multi-touch panel operations					
	Security	Operator authentication, Lock screen, OSP-VPSII-STD					
Programming	Program capacity	Program storage capacity: 4 GB; operation buffer: 2 MB					
	Program operations	Scheduled program, fixed cycle, G-/M-code macros, arithmetic, logic statements, math functions, variables, branch commands,					
		Coordinate calculate, area machining, coordinate convert, programming help, user task, keyway cycle					
Operations	OSP suite	"suite apps" to graphically visualize and digitize information needed on the shop floor,					
		"suite operation" enable one-touch access to "suite apps".					
	Easy Operation	"Single-mode operation" to complete a series of operations. Advanced operation panel/graphics facilitate smooth machine control					
	MacMan plus	Machining management: aggregation and display of machining records, operating records and problem information,					
		Visualization of power consumption, file output					
	Machine operations	Operation help, load meter, alarm help, sequence return, manual interrupt/auto return, pulse handle overlap, parameter I/O,					
		PLC monitor, auto power shut-off					
Communications	/ Networking	USB (2 ports), Ethernet, DNC-T1, Smart I/F					
High speed/accu	iracy specs	Thermo Active Stabilizer-Spindle (TAS-S), Thermo Active Stabilizer-Construction (TAS-C), Hi-Cut Pro,					
		Pitch error compensation, Hi-G control, SERVONAVI, Cycle time reduction (operation time reduction, machining time reduction,					
		easy parameter setting)					
Energy-saving	ECO suite plus	ECO Idling Stop, ECO Operation, oil temperature controller auto control, ECO Power Monitor					
	Power Regeneration System	Regenerative power is used when the spindle and feed axes decelerate to reduce energy waste.					

OSP-P500M kit/optional specifications

	Kit Optional Option		ИL	A(ЭТ		т	DT		Kit Specs NML AOT DT DT A
Item	Kit Specs	E		E		E		E	D	Item Kit Specs NML AOI DI DI A
Digital Twin			-						_	Gauging
Virtual Machining										Auto tool length offset/breakage detection
Ŭ						(VE)	(VD)	(VE)	(VD)	In-magazine tool breakage detection
Quick Modeling						•	•	•	•	Auto Workpiece Gauging/Auto zero offset
						(VE)	(VD)		(VD)	Manual gauging (w/o sensor)
OPC UA for Machine To	ols					•	•	•	•	Interactive gauging (touch sensor, touch probe required)
OSP API KIT						•	•	•	•	Monitoring
Interactive functions				-						21.5-inch color LCD operation panel tilt adjustment
	GF-M (w/ Real 3-D simulation)							•		One-Touch Spreadsheet
Interactive MAP (I-MAP						•	•			Collision Avoidance System
Smart OSP Operation				•	•	•	•	•	•	Real 3-D Simulation
Programming										Simple load monitor Spindle overload monitor
Operation buffer 10MB										NC operation monitor Hour meter, workpiece counter
Program notes (MSG)		•	•	•	•	•	•	•	•	Status indicator
Auto scheduled progran	n update	•	•	•	•	•	•	•	•	Operation end buzzer
Block skip; 9 sets		-	-	-	-	-	-	-	-	Workpiece counters on machine
Program branch; 9 sets										Tool breakage no-loaddetection
Coordinate system	100 sets	•		•		•		•		MOP-TOOL Adaptive control, overload monitor
select (Std: 20 sets)	200 sets	-	•	-	•	-	•	-	•	Al machine diagnostics * Spindle + feed axes, or feed axes only
	400 sets		-		-		-		-	Machine Status Logger
Helical cutting		•	•	•	•	•	•	•	•	Cutting Status Monitor
3-D circular interpolation	n	-	-	-	-	-	-	-	-	Machining Navi M- <i>i</i> , M-gI+(cutting condition search)
Skip	-									Feed axis retraction
Synchronized Tapping I	-	•	•	•	•	•	•	•	•	Tool retract cycle
Arbitrary angle chamferi		•	•	•	•	•	•	•	•	Automation / unattended operation
Cylindrical side facing	19	-	-	-	-	-	-	-	-	Warm-up (calendar timer)
Tool max rotational spee	ed setting									External program Button, rotary switch
F1-digit feed	External switch type, parameter type									Digital switch, BCD (2-digit, 4-digit)
Programmable travel lin		•	•	•	•	•	•	•	•	Pallet pool control (PPC) (Required for multi-pallet APC)
Slope machining	Type I, Type I	-	-	-	-	-	-	-	-	Connection with Robot, loader I/F
Axis name designation	1)po 1, 1)po 1									automated devices Stacker crane I/F
Fixture offset I										EMS link I/F
Dynamic fixture offset										High-speed, high-precision
Tool grooving										AbsoScale detection X-Y-Z axes
Turn-Cut										Dynamic displacement compensation
Dynamic Tool Load Con	trol									0.1 µm control (linear axis commands)
3-D tool compensation										Hyper-SurfaceII 3 linear axes, 3 linear axes + 2 rotary axes
Drawing conversion	Programmable mirror image (G62)		•	-	•		•		•	ECO suite plus
Drawing conversion	Enlarge/reduce (G50, G51)		•		•		•		•	ECO Power Monitor On-machine wattmeter
User task	Common variables 1,000, 2,000 pcs		-	-	-		-		-	Spindle Power Peak Limiter
Uder taak	G code macros: 80 sets added									Energy-saving hydraulic unit ECO Hydraulics
	I/O variables (16 each)			-						External output interface of consumed electricity
Sequence stop	i/O variables (10 each)	•	•	•	•	•	•	•	•	Other
Sequence return	Mid-block sequence return	-	•	-	•	-	•	-	•	Circuit breaker
	Includes input restriction	•		•	•	•	•	•	•	OSP-VPSI (Virus Protection System)
Tool life management	Includes warning	•	•	•	•	•	•	•	•	Pulse handles 2 pcs, 3 pcs
External I/O communicat	Ū							-	-	External M codes [4 sets, 8 sets]
RS-232C connector										
DNC connection	DNC-T3, DNC-B, DNC-DT			-						Note. NML: Normal kit, AOT: Advanced One-Touch IGF-M kit, DT: Digital Twin kit,
Divo connection	DNC-T3, DNC-B, DNC-DT DNC-C/Ethernet									DT AOT: Digital Twin Advanced One-Touch IGF-M, E: Economy, D: Deluxe VE and VD kits are also equipped with the Digital Twin on PC function, allowing running from a
	Dito of Ethernet									* With AbsoScale detection specs, ball-screw wear detection is possible.

15-inch operation panel

6

Simulating the CNC of a real machine

Super-fast and super-accurate machining simulations are performed with the

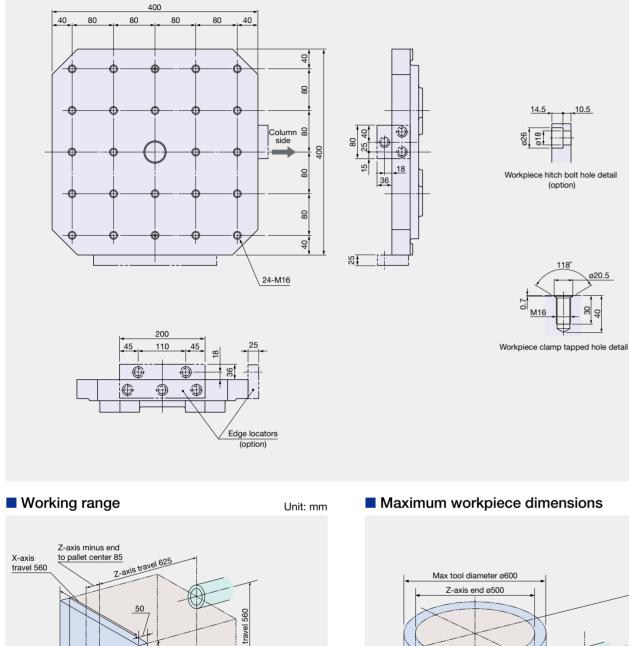
Actual machining can be started immediately, greatly improving the

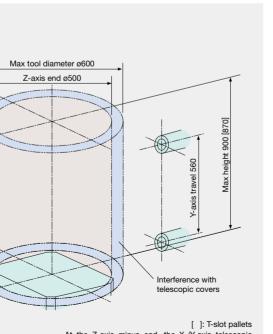
CNC of a real machine on-site to minimize machining preparation work.

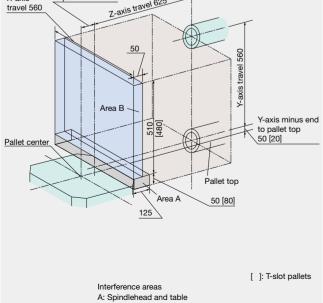
Digital Twin On Machine

operating rate of the machine.

Specifications, etc. are subject to change without notice.

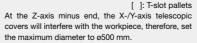

Unit: mm

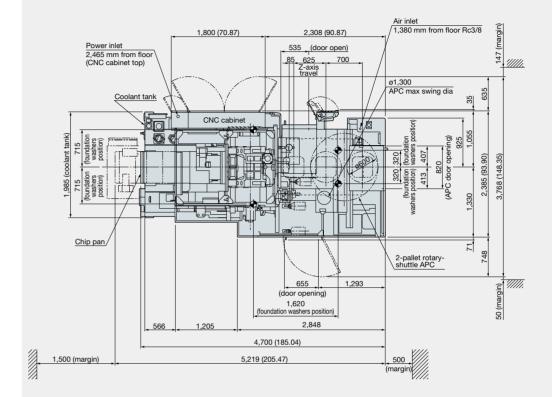

Unit: mm

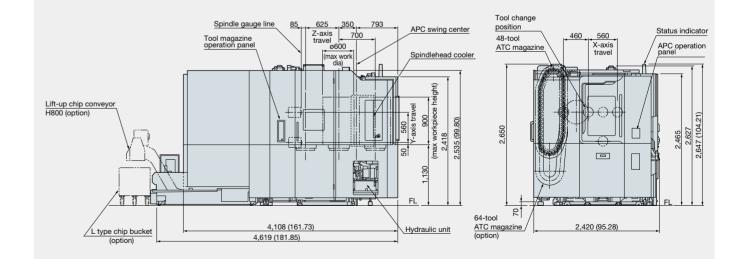

10.5

(option)

MB-4000H **Dimensional and Installation Drawings**







B: X-/Y-axis telescopic covers. (Max workpiece dimensions)

- Maximum workpiece dimensions

OKUMA Corporation

Oguchi-cho, Niwa-gun, Aichi 480-0193, Japan TEL: +81-587-95-7825 FAX: +81-587-95-6074

> This product is subject to the Japanese government Foreign Exchange and Foreign Trade Control Act with regard to security controlled items; whereby Okuma Corporation should be notified prior to its shipment to another country.